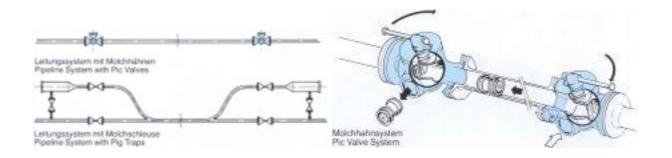
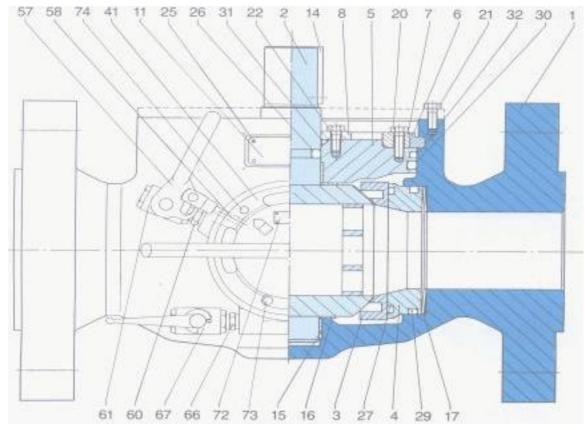


Чистяще-скребковый шаровой кран




Применение

Чистяще-скребковые шаровые краны Итаг позволяют осуществлять быстрый запуск и прием чистящих и разделительных, а также укороченных скребков для трубопроводов. Преимуществом Чистящескребковых кранов перед традиционными ловушками для скребков является легкое управление и длина трубопровода, а также не требуется большой площади за счет меньшего общего размера. Для запуска и приема скребков, в корпусе крана имеется ловушка, оснащенная крышкой.

Конструкция Чистяще-скребкового крана Итаг предусматривает наличие ловушки, во всем остальном, она идентична конструкции Шарового крана Типа IT Итаг:

- Конструкция с доступом сверху, т.е. шар и кольца седла, закреплены в корпусе крана сверху, т.о. для ремонта внутренних деталей, не требуется извлекать весь кран из трубопровода.
- Все составные детали могут быть установлены без применения специальных инструментов.
- Проходное отверстие без пазов и выступов, благодаря чему никакие посторонние примеси не оседают.
- Все уплотнительные элементы имеют простую геометрическую форму, например «О» образные уплотнительные кольца.
- Компания Итаг авторизована использовать монограмму API на своих кранах для трубопроводов. Т.о. материалы, осмотр и размеры соответствуют стандартам API Spec 6D.

Поз. Обозначение Материал ASTM, AISI / Обычное исполнение ASTM A 216 WCB ASTM A 487 1C Корпус Шаровая пробка ASTM A 182 F6b 3. Кольно селла PTFE ASTM A 182 F6b Уплотнение кольца седла Опорное кольцо Крышка корпуса AISI 4130 Сегментное кольцо Стопорное кольцо AISI 4130 AISI 1022 Крышка AISI 1022 Заволская табличка 11. SS AISI 1022 PTFE + сталь PTFE + сталь 14. 15. Призматическая шпонка Радиальный подшипник Осевой подшипник 16. 17. 20. AISI 302 AISI 4130 Пружина Винт с 6-гранной головкой Винт с 6-гранной головкой 21. 22. 25. AISI 4130 Винт с 6-гранной головкой Насеченный штифт AISI 4130 26. 27. «О» образное кольцо (цапфа) FPM FPM «О» образное кольцо (кольцо седла) 29. 30. «О» образное кольцо (корпус) FPM «О» образное кольцо (крышка) Уплотнительное кольцо (Цапфа) FPM 31. Графит 32. 41. 51. 57. Графит AISI 1022 Уплотнительное кольцо (Крышка) Крышка ловушки «О» образное кольцо FPM AISI 1022 Защитное блокирующее устройство 58. Стопорный штифт AISI 1022 60. 61. Вентиляционная пробка Вентиляционный клапан AISI 1022 Сталь 66. 67. 72. Выпускная пробка AISI 1022 Сталь Выпускной клапан Предупреждающая табличка AISI 4130 SS 73. 74. Потайной винт

Насеченный штифт

Размер и Конструкция

Соединение труб.

Производственная программа Итаг включает все условные диаметры шаровых кранов API от 2 дюймов до 24 дюймов и ступени давления от ANSI 150 до ANSI 1500 как приведено в Таблицах с размерами на стр. 9. Трубы с фланцевыми соединениями в соответствии со стандартами DIN, API или трубы со сварными соединениями поставляются пол заказ.

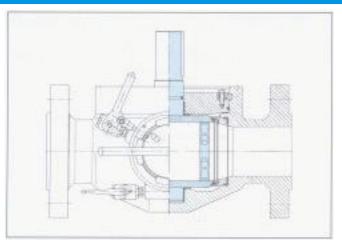
Очистной скребковый шаровой кран Типа РС

Стандартный скребковый кран является Очистным скребковым шаровым краном (Типа PC). Проходное отверстие шара прибл. на 25% больше чем соединительная линия трубопровода, поэтому поток не прерывается, по ходу скребка в узел приема. Любые загрязняющие вещества, перемещающиеся вместе со скребком, с легкостью смываются прямо в шламоуловитель.

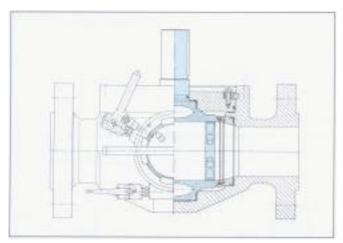
Очистные шаровые краны применяются для запуска и приема чистящих или специальных скребков, не превышающих по длине 1,4 х Внутренний диаметр трубы.

Обводные (байпасные) шаровые краны Типа РВ

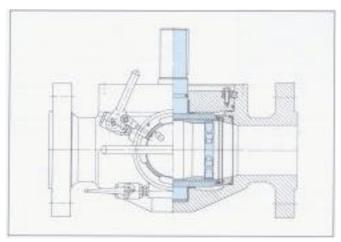
В случае если во время запуска или приема скребка (шар крана в закрытом положении), необходимо отвести новое русло в трубопроводе, то Скребковые краны могут быть исполнены ка Обводные шаровые краны (Типа ВР). Такие краны преимущественно применяются для трубопроводов, чей поток рабочей среды не должен прерываться или в случае, если нагнетающие насосы не могут быть остановлены.

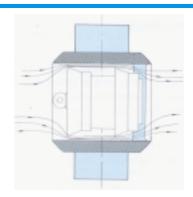

Поперечное сечение обводного канала прибл. 25 % от гидравлического поперечного сечения трубопровода.

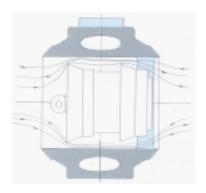
Обводные каналы находятся внутри шаровой пробки под прямыми углами к проходному отверстию, т.о. кран устанавливается либо как «проходной», либо как «обводной».

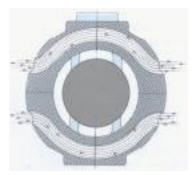

<u>Разделительные шаровые краны Типа PS</u>

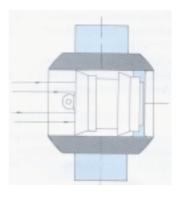
Когда требуется разделить среду, для запуска и приема разделительных скребков применяется Разделительный шаровой кран Типа PS. На отверстии крана для приема скребков устанавливается дополнительное уплотнение, для того, чтобы избежать смешивая среды, которая была разделена после появления скребка. Чтобы ослабить предварительное натяжение манжеты или шара, проходное отверстие шара слегка увеличено, чем внутренний диаметр трубопровода. Устройство выброса скребков, установленное напротив ловушки облегчает процесс извлечения разделительного скребка из Разделительного крана.




Очистной скребковый кран Типа РС




Обводной скребковый кран Типа РВ



Разделительный скребковый кран Типа PS

Конструктивные особенности

Установка в опорной цапфе

Не зависимо от условного диаметра или ступени давления, каждый Чистяще-скребковый шаровой кран Итаг устанавливается в опорной цапфе. Цапфа располагается в стальных подшипниках обработанных смазкой на основе ПФТЭ, для бесперебойной и точной работы. Опорная цапфа шара принимает на себя осевую нагрузку, которая создается из-за давления в трубопроводе, не допуская чрезмерной силы трения, возникающей между шаром и кольцами седла.

Не требует дополнительной смазки

Маловязкая смазка на основе ПФТЭ применяется для подшипников и седел, благодаря этому, момент вращения становится прогнозируемым.

«Double Block and Bleed» Двойная блокировка и выпуск

Как в открытом, так и в закрытом положении, давление на каждой стороне шара отсекается от полости корпуса при помощи колец седла. Корпус может быть опустошен при помощи выпускного отверстия.

Привод крана

В соответствии с крутящим моментом, который зависит от внутреннего диаметра, условного давления, уплотнительного материала и рабочей среды в трубопроводе – Чистяще-скребковые краны оснащены рычагом, приводом с одной ЗП (зубчатой передачей) или червячным редуктором.

Крутящий диапазон в условиях обычной эксплуатации равен 90° но может быть увеличен до 180°. Для приведения в действие в автоматическом режиме, кран оснащается электрическими, пневматическими или гидравлическими приводами. Приводы могут устанавливаться различных размеров и производителей.



Приводы, характерные особенности, техподдержка

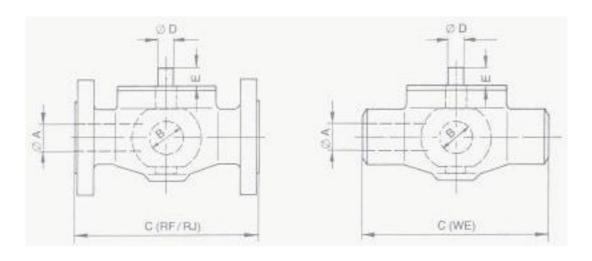
Приводы

В зависимости от размера шарового крана Итаг, они оснащаются либо ручными рычагами, либо червячными редукторами. Также могут быть установлены электрические, пневматические и гидравлические приводы.

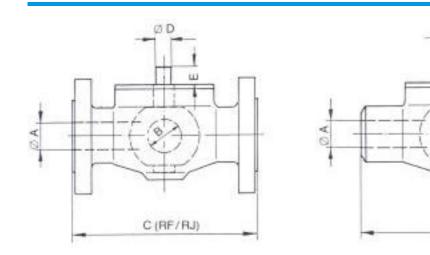
Характерные особенности

Технические рекомендации

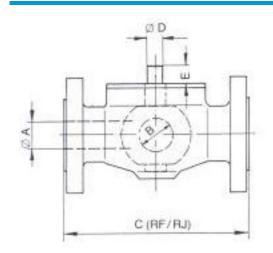
В случае возникновения проблем с выбором исполнения, оснащения или приводов и т.д. наши инженеры всегда в вашем распоряжении.

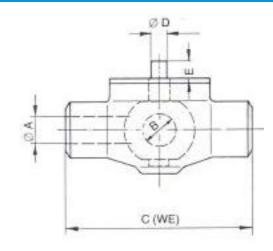


Fertigungsprogramm Molchhähne Manufacturing Program Pic Valves + - Handhebel, Lever () = Getriebe, Gear Nennweite in Zoll. Nominal Diameter in Inch. Druckstufe 10 12 16 18 20 22 24 >24 14 Class 0 0 + + 0 0 0 ANSI 150 300 -+ O ANSI 400 ÷ +ANSI 0 ANSI 600 + ÷ 0 ANSI 900 + 1500 0 0 0 ANSI ANSI 2500 API 2000 0 0 0 API 3000 API 5000 API 10000 0 0 DIN PN 0 16 1 + ÷ 0 0 0 DIN PN 25 4 + 4 0 0 0 0 DIN PN + DIN PN 63 + 0 0 0 0 **DIN PN 100** . + 0 0 **DIN PN 160** + 0 **DIN PN 250**

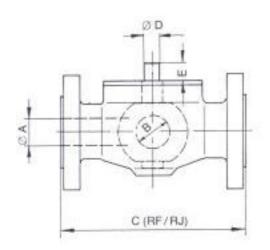

^{*} краны с большим условным диаметром и ступенями давления под заказ.

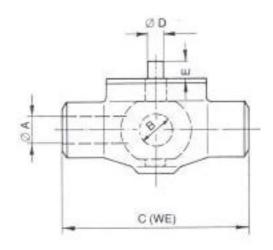
Mep A B B CR CR CR CR CR CR				КЛАСС	NSI 15	0, 300									
SO S2,4 G3,5 S5,0 330 343 346 381 35 44 86 36 37 38 38 38 38 38 38 38	мер	A			C RF			CWE	D	Е		ктор	Оборот	ктор	Оборо т при
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		MM	\ \ /	ММ	ММ			MM	ММ	MM	KI				90°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50				330		346	381	35	44	86		1/.		1/.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.2	32		- 12	- 0					-	/ 4	-	/ 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			101,0	,									1/4		1/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							U			-		-	/ 4	-	/ 4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													1/4		7
6 6'16 7'8 63/8 26 26'2 26'8 32 1,38 13/4 854 01 7 02 10 200 203,2 235,0 213,0 794 807 810 1016 55 90 622 AUS 10 AUS 8 8 9 ¹ / ₄ 83/8 31 ¹ / ₄ 31 ³ / ₄ 31 ⁷ / ₈ 40 2,17 3 ¹ / ₂ 1368 02 10 250 254,5 304,8 267,0 940 953 956 1194 75 125 842 AUS 52 AUS 10 10 ¹ / ₂₃ 12 10 ¹ / ₂ 37 37 ¹ / ₂ 37 ² / ₈ 47 2,95 4 ¹⁵ / ₁₆ 1852 04 52 AUS 300 304,8 340,0 320,0 1067 1080 1083 1372 75 125 1230 AUS 52 AUS 12 12 13 ³ / ₃ 12 ⁵ / ₈ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>14</td> <td></td> <td></td>							_					-	14		
6 6' _{1/6} 7' ₈ 6' ₈ 26 26' ₂ 26' ₈ 32 1,38 1' ₄ 854 01 02 200 203,2 235,0 213,0 794 807 810 1016 55 90 622 AUS 10 AUS 8 8 9 ¹ / ₄ 8 ³ / ₈ 31 ¹ / ₄ 31 ³ / ₄ 31 ³ / ₈ 40 2,17 3 ¹ / ₂ 1368 02 10 250 254,5 304,8 267,0 940 953 956 1194 75 125 842 AUS 52 AUS 10 10 ¹ / ₃₂ 12 10 ¹ / ₂ 37 37 ¹ / ₂ 37 ⁵ / ₈ 47 2,95 4 ¹⁵ / ₁₆ 1852 04 52 AUS 300 304,8 340,0 320,0 1067 1080 1083 1372 75 125 1230 AUS 52 AUS 54 350 336,6 387,4 356,0													7		10
8 8 9\(^1/4\) 8\(^1/8\) 31\(^1/4\) 31\(^1/4\) 31\(^1/8\) 40 2.17 3\(^1/2\) 1368 02 10 02 10 250 254,5 304,8 267,0 940 953 956 1194 75 125 842 AUS 52 AUS 10 10\(^1/3\)2 12 10\(^1/2\)2 37 37\(^1/2\)2 37\(^5/8\)8 47 2,95 4\(^{15}/16\)16 1852 04 52 AUS 52 300 304,8 340,0 320,0 1067 1080 1083 1372 75 125 1230 AUS 52 AUS 12 12 13\(^3/8\)3 12\(^5/8\)8 42 42\(^1/2\)2 42\(^5/8\)8 54 2,95 4\(^{15}/16\)6 2706 04 308 34 356,0 1143 1156 1159 1499 95 130 1566 AUS 54 AUS 54 408 54 438,2			-				0								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											_		10		10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 14				-								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													52		52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													52		54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													54		54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.0					- 10								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													54		54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-								
500 489,0 539,8 508,0 1676 1689 1695 2184 95 130 2925 AUS 20 19\(^1/4\) 21\(^1/4\) 20 66 66\(^1/2\) 66\(^3/4\) 86 3,74 5\(^1/8\) 6435 08 51 16 53 AUS 54 AUS 550 539,8 590,6 558,8 1829 1842 1851 2388 120 160 3750 AUS 22 21\(^1/4\) 23\(^1/4\) 22 72 72\(^1/2\) 72\(^1/8\) 94 4,72 6\(^5/16\) 8250 16 50 500 500,6 641,4 616.0 1081 1004 2003 2501 120 160 4500 AUS							-						54		53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							U								
550 539,8 590,6 558,8 1829 1842 1851 2388 120 160 3750 AUS 22 21 ¹ / ₄ 23 ¹ / ₄ 22 72 72 ¹ / ₂ 72 ¹ / ₈ 94 4,72 6 ⁵ / ₁₆ 8250 16 53 AUS 53 AUS 600 500,6 641,4 616,0 1081 1004 2003 2501 120 160 4500 AUS													54		- 53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 7 4				7 7 7 2	_			Ü					
600 500 6 641 4 616 0 1091 1004 2002 2501 120 160 4520 AUS													53		53
000 390,0 041,4 010,0 1981 1994 2003 2391 120 100 4320 AUS 23 AUS		-							_						
$24 23^{1}/_{4} 25^{1}/_{4} 24^{1}/_{4} 78 78^{1}/_{2} 78^{7}/_{8} 102 4.72 6^{5}/_{16} 9944 16 53 16 53$							-						53		53


КЛАСС	ANSI 400	, 600									
Раз мер мм	A	B (PC) (PB)	B (PS)	C RF	C RJ	C WE	D	Е	RF/RJ	Реду ктор	Оборо т при
	MM	ММ	ММ	MM	MM	MM	MM	ММ	КГ		90°
50	52,4	63,5	54,0	330	333	381	35	44	88		1,
2	$2^{1}/_{16}$	$2^{1}/_{2}$	$2^{1}/_{8}$	13	$13^{1}/_{8}$	15	1,38	$1^{3}/_{4}$	194	-	1/4
80	78,0	101,0	85,0	445	448	508	35	44	118		¹ / ₄
3	$3^{1}/_{16}$	4	$3^{3}/_{8}$	$17^{1}/_{2}$	$17^{5}/_{8}$	20	1,38	$1^{3}/_{4}$	260	-	/4
100	102,3	120,0	108,0	508	511	610	35	44	262	AUS	7
4	$4^{1}/_{32}$	$4^{3}/_{4}$	$4^{1}/_{4}$	20	$20^{1}/_{8}$	24	1,38	$1^{3}/_{4}$	576	01	/
150	154,1	180,0	162,0	660	663	813	55	90	424	AUS	10
6	$6^{1}/_{16}$	$7^{1}/_{8}$	$6^{3}/_{8}$	26	$26^{1}/_{8}$	32	2,17	$3^{1}/_{2}$	933	02	10
200	203,2	235,0	213,0	794	797	1016	75	125	670	AUS	52
8	8	$9^{1}/_{4}$	$8^{3}/_{8}$	$31^{1}/_{4}$	$31^{3}/_{8}$	40	2,95	$4^{15}/_{16}$	1474	04	32
250	254,5	304,8	267,0	940	943	1194	95	130	930	AUS	54
10	$10^{1}/_{32}$	12	$10^{1}/_{2}$	37	$37^{1}/_{8}$	47	3,74	$5^{1}/_{8}$	2046	08	34
300	304,8	340,0	320,0	1067	1070	1372	95	130	1310	AUS	54
12	12	$13^{3}/_{8}$	$12^{5}/_{8}$	42	42 ¹ / ₈	54	3,74	$5^{1}/_{8}$	2882	08	34
350	336,6	387,4	356,0	1143	1146	1499	120	160	1658	AUS	53
14	13 ¹ / ₄	15 ¹ / ₄	14	45	$45^{1}/_{8}$	59	4,72	$6^{5}/_{16}$	3648	16	33
400	387,4	438,2	406,0	1372	1375	1778	120	160	2121	AUS	53
16	15 ¹ / ₄	$17^{1}/_{4}$	16	54	54 ¹ / ₈	70	4,72	$6^{5}/_{16}$	4666	16	33
450	438,2	489,0	457,0	1524	1527	1981	120	160	2280	AUS	53
18	$17^{1}/_{4}$	19 ¹ / ₄	18	60	$60^{1}/_{8}$	78	4,72	$6^{1}/_{16}$	5016	16	
500	489,0	539,8	508,0	1676	1682	2184	150	220	3100	AUS	78
20	19 ¹ / ₄	211/4	20	66	66 ¹ / ₄	86	5,91	$8^{11}/_{16}$	6820	32	
550	539,8	590,6	565,0	1829	1839	2388	150	220	3950	AUS	78
22	211/4	$23^{1}/_{2}$	221/4	72	$72^{3}/_{8}$	94	5,91	$8^{11}/_{16}$	8690	32	
600	590,6	641,4	616,0	1981	1991	2591	150	220	4740	AUS	78
24	$23^{1}/_{4}$	$25^{1}/_{4}$	$24^{1}/_{4}$	78	$78^{3}/_{8}$	102	5,91	8 ¹¹ / ₁₆	10430	32	

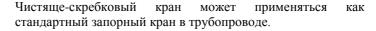

ØD

C (WE)



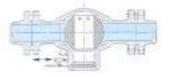


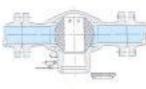
КЛАСС	ANSI 900)									
Раз мер	A	B (PC) (PB)	B (PS)	C RF	C RJ	C WE	D	Е	RF/RJ	Реду ктор	Оборо т при
MM	ММ	ММ	ММ	ММ	MM	ММ	ММ	MM	КГ		90°
50	50,8	63,5	54,0	381	384	432	35	44	88		1,
2	2	$2^{1}/_{2}$	$2^{1}/_{8}$	15	$15^{1}/_{8}$	17	1,38	$1^{3}/_{4}$	174	-	1/4
80	76,2	101,0	82,0	470	473	546	35	44	150	AUS	7
3	3	4	$3^{3}/_{8}$	$18^{1}/_{2}$	$18^{5}/_{8}$	$21^{1}/_{2}$	1,38	$1^{3}/_{4}$	330	01	7
100	101,6	120,0	108,0	559	562	660	55	90	290	AUS	10
4	4	$4^{3}/_{4}$	$4^{1}/_{4}$	22	$22^{1}/_{8}$	26	2,17	$3^{1}/_{2}$	640	02	10
150	152,4	180,0	162,0	737	740	889	75	125	500	AUS	50
6	6	$7^{1}/_{8}$	$6^{3}/_{8}$	29	$29^{1}/_{8}$	35	2,95	$4^{15}/_{16}$	1100	04	52
200	203,2	235,0	213,0	889	892	1092	95	130	1055	AUS	54
8	8	$9^{1}/_{4}$	$8^{3}/_{8}$	35	$35^{3}/_{8}$	43	3,74	$5^{1}/_{8}$	2320	08	54
250	254,0	304,8	267,0	1041	1044	1295	120	160	1210	AUS	53
10	10	12	$10^{1}/_{2}$	41	$41^{1}/_{8}$	51	4,72	$6^{5}/_{16}$	2660	16	33
300	304,8	340,0	320,0	1194	1197	1499	120	160	1818	AUS	53
12	12	$13^{3}/_{8}$	$12^{5}/_{8}$	47	$47^{1}/_{8}$	59	4,72	$6^{5}/_{16}$	4000	16	33
350	323,9	387,4	356,0	1346	1356	1702	150	220	2150	AUS	78
14	$12^{3}/_{4}$	15 ¹ / ₄	14	53	$53^{3}/_{8}$	67	5,91	8 ¹¹ / ₁₆	4730	32	/ 8
400	374,7	438,2	406,0	1499	1509	1905	150	220	3010	AUS	78
16	$14^{3}/_{4}$	$17^{1}/_{4}$	16	59	$59^{3}/_{8}$	75	5,91	8 ¹¹ / ₁₆	6620	32	78
450	425,5	489,0	457,0	1651	1664	2108	150	220	4040	AUS	78
18	$16^{3}/_{4}$	$19^{1}/_{4}$	18	65	$65^{1}/_{2}$	83	5,91	8 ¹¹ / ₁₆	8888	32	78
500	473,1	539,8	508,0	1803	1816	2311	150	220	5270	AUS	78
20	$18^{5}/_{8}$	$21^{1}/_{4}$	20	71	$71^{1}/_{2}$	91	5,91	8 ¹¹ / ₁₆	11595	32	78
550	523,9	590,6	565,0	-	-	2540	180	260	5590	AUS	106
22	$20^{5}/_{8}$	$23^{1}/_{2}$	$22^{1}/_{4}$	-	-	100	7,09	$10^{1}/_{4}$	12300	63	100
600	571,5	641,4	616,0	2159	2178	2767	180	260	7870	AUS	106
24	$22^{1}/_{2}$	25 ¹ / ₄	$24^{1}/_{4}$	85	$85^{3}/_{4}$	109	7,09	$10^{1}/_{4}$	17315	63	100

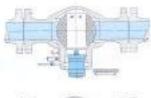


КЛАСС	ANSI 150	0									
Разм	A	В	В	C RF	C RJ	C WE	D	Е		Реду	Оборо
ер		(PC)	(PS)						RF/RJ	ктор	т при
MM	MM	(PB) mm	MM	MM	MM	MM	MM	MM	КГ		90°
IVI IVI	WIWI	WIWI	IVIIVI	WINI	IVIIVI	IVIIVI	IVIIVI	WINI	KI)0
50	50,8	63,5	54,0	432	435	483	35	44	112	AUS	7
2	2	$2^{1}/_{2}$	$2^{1}/_{8}$	17	$17^{1}/_{8}$	19	1,38	$1^{3}/_{4}$	246	01	,
80	76,2	101,0	82,0	559	562	635	55	90	200	AUS	10
3	3	4	$3^{1}/_{4}$	22	$22^{1}/_{8}$	25	2,17	$3^{1}/_{2}$	440	02	10
100	101,6	120,0	108,0	711	714	813	75	125	375	AUS	52
4	4	$4^{3}/_{4}$	$4^{1}/_{4}$	28	$28^{1}/_{8}$	32	2,95	$4^{15}/_{16}$	825	04	32
150	146,1	180,0	162,0	889	895	1041	95	130	770	AUS	54
6	$5^{3}/_{4}$	$7^{1}/_{8}$	$6^{3}/_{8}$	35	35 ¹ / ₄	41	3,74	$5^{1}/_{8}$	1695	08	34
200	193,7	235,0	213,0	1067	1077	1270	120	160	1420	AUS	53
8	$7^{5}/_{8}$	$9^{1}/_{4}$	$8^{3}/_{8}$	42	$42^{3}/_{8}$	50	4,72	$6^{5}/_{16}$	3125	16	33
250	241,3	304,8	267,0	1245	1255	1499	120	160	2450	AUS	53
10	$9^{1}/_{2}$	12	$10^{1}/_{2}$	49	$49^{3}/_{8}$	59	4,72	$6^{5}/_{16}$	5390	16	33
300	288,9	340,0	320,0	1422	1438	1727	150	220	3990	AUS	78
12	$11^{3}/_{4}$	$13^{3}/_{8}$	$12^{5}/_{8}$	56	56 ⁵ / ₈	68	5,91	8 ¹¹ / ₁₆	8780	32	78
350	317,5	387,4	356,0	1600	1619	1956	150	220	4510	AUS	78
14	$12^{1}/_{2}$	$15^{1}/_{4}$	14	63	$63^{3}/_{4}$	77	5,91	8 ¹¹ / ₁₆	9920	32	, 6
400	362,0	438,2	406,0	1778	1800	2184	180	260	7040	AUS	106
16	$14^{1}/_{4}$	$17^{1}/_{4}$	16	70	$70^{7}/_{8}$	86	7,09	$10^{1}/_{4}$	15490	63	100

Процедура запуска скребка




Повернуть шар крана на 90° - привести его в полностью закрытое положение. Проходное отверстие шара теперь находится перпендикулярно оси трубопровода. Блокирующие валики расположены на выходе отверстия напротив пускового отверстия.


Открыть спускной клапан, расположенный у основания корпуса крана, чтобы полностью сбросить давление в корпусе. Если рабочая субстанция опасна для окружающей среды, спускной клапан должен быть подсоединен к факельной системе.

Дополнительный вентиляционный клапан соединен с предохранительным штыковым затвором крышки ловушки. Т.о отверстие может выть открыто только после открытия вентиляционного клапана. Такой затвор является гарантией безопасности при открытии ловушки, ввиду того, что затвор не откроется, пока в корпусе полностью не снизится давление.

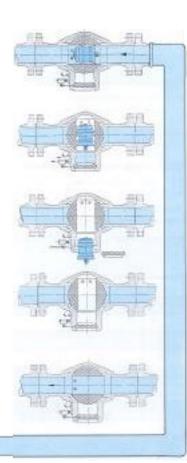
Поверните крышку ловушки влево с помощью рычага или маховика. Ловушка чистяще-скребкового крана может быть открыта (стрелка на крышки ловушки указывает на нижнюю точку на муфте отверстия корпуса).

Вставьте скребок в ловушку тыльной стороной до упора в блокирующие валики.

Вставьте крышку ловушки. Закройте ее, поворачивая вправо. Закройте спускной и вентиляционный клапан. Штыковой затвор одновременно закроется и надежно заблокирует крышку.

Поверните шар на 90° -приведите его в полностью открытое положение. Ось отверстия шара теперь совпадает с осью трубопровода, блокирующие валики расположены в конце напротив участка трубопровода, через который скребок будет выталкиваться из крана в трубопровод давлением потока, создаваемым рабочей средой.

Процедура приема скребка


Скребок прибывает в узел приема.

Повернуть шар крана на 90° - привести его в полностью закрытое положение. Открыть спускной клапан, расположенный у основания корпуса крана. Открыть предохранительный вентиляционный клапан с затвором.

Поверните крышку ловушки влево, чтобы открыть ловушку. Выньте скребок.

Поверхность уплотнения должна быть очищена, крышка ловушки закрыта, поворачивайте ее вправо. Предохранительный вентиляционный клапан с затвором закрыт. Закройте спускной клапан.

Шар крана приведен в открытое положение. Чистящескребковый кран функционирует как стандартный запорный кран.

Материалы

Материалы для корпуса и шара.

Ниже представленные материалы являются стандартными для изготовления корпуса крана, шара, колец седла и крышки корпуса. Материалы других классов доступны под заказ

Код	Класс матер.	Литая	я сталь	Кованная/ката	Комбинац.	
		ASTM	DIN	ASTM	DIN	
0	Углеродистая сталь	A 216 WCB	GS-C25	A 105	C 22.8	Regular
	1	(A 352 LCB)	(GS-CK24)	(A 350 LF2)	(TT-St 41)	
1	Низколегированная стал	А4871С(А 757Е1) Б	GS-25CrMo4(GS-26CrMo4)	A 304-4130H (A 707-L5)	25CrMo4 (26CrMo4)	Regular
2	13 % Cr Steel	A487CA15M	G-X8CrNi13	A 182 F6a	X10Cr13	Solid
3	13.4 CrNi Steel	A 487 CA6NM _{(A 352} CA	6NM) G-X5CrNi13.4	A 182 F6NM	X4CrNi13.4	Master
4	Аустенитная сталь	A 351 CF8M	G-X6CrNiMo18.10	A 182 F316	X5CrNiMo17.12.2	Super
5	Сталь дуплекс	A 743 CD 4MCu	G-X3CrNiMoCu26.6	A 182 F51	X2CrNiMoN22.5	Super
8	Цветной металл	A 494 CW-12MW	G-NiMo16Cr	B 637, N07718	NiCr19 NbMo	
9	Другие классы материа	алов в данной табли	це не представлены			

⁽⁾ Сталь подвергнутая низкому отпуску

Материалы для уплотнительных и пружинных элементов

Комбинации материалов для уплотнения колец седла, корпуса а также для пружин осуществляется


	Пружи	ны	Уплотнит	ель седла	Уплотнители				
Код	17.7 CrNi	Никелевый сплав	ПФТЭ /РТСГЕ/ПА	Графит металл	Эластом.ФПМ	ЕТФП	Графит металл		
0	X		X		X				
1		X	X		X				
2	X			X	X				
3		X		X	X				
4	X		X			X			
5		X	X			X			
6	x			X		X			
7		X		X		X			
8		X		X			X		
Д									

Таблица для расчета кода.

Материал применяемый для изготовления корпуса, шара, уплотнителей и пружин приведен в таблице расчета кодов.

Наименование комбинаций материала

Для того чтобы более точно определить области применения наиболее важных комбинаций материала, они подразделяются на 4 группы.

- * **Regular** (Стандартная) 010-0 (для среды не вызывающей коррозию)
- * **Solid** (Прочная) 020-0

(для среды, вызывающей незначительную коррозию)

* Master (Базовая) 031 -0

(для среды, вызывающей повышенную коррозию)

* **Super** (Первоклассная) 055-0

(для среды, вызывающей очень сильную коррозию)

Данные комбинации могут быть изменены дополнительно, для применения материалов при низких температурах или других суровых условиях.

Оформление заказа на поставку Чистяще-скребкового шарового крана

Необходимо предоставить следующую информацию:

- 1 Номинальный диаметр и размер отверстия (наприм. 10 дюймов).
- 2. Ступени давления (ANSI 600, API 3000 и т.д.).
- 3. Тип концевого соединения (Могут поставляться краны с неодинаковыми концевыми соединениями Для сварных концевых соединений укажите внутренний диаметр или наружный диаметр, толщину стенок и марку материала трубы
- 4. Длину встраивания (строительная длина)
- 5. Тип крана (PC, PB or PS).
- 6. Тип привода.
- 7. Удлинитель управляющей цапфы, при необходимости. Укажите общую длину от средней оси трубы до средней оси маховика или верха крепежного фланца редуктора.
- 8. Код комбинации материала или применение.
- 9. Оснастка при необходимости (выталкиваю устройства). Маховики и рычаги поставляются вместе с краном при необходимости.

Оформление заказа на поставку приводов для чистяще-скребковых шаровых кранов компании Итаг

Компания Итаг может поставлять приводы для удобства потребителей. Необходимо указать следующую информацию:

- 1. Условный диаметр крана и ступень давления
- 2. Максимальный перепад давления в кране во время эксплуатации. Режим работы, например время открытия и закрытия, рабочую частоту.
- 3. Тип привода (пневматический, гидравлический или электрический).
- 4. Рабочую среду, рабочее давление и для электроприводов напряжение, частоту, фазу, категорию защиты и т.д
- 5. Желаемый вид привода (с дистац.управлением, самоотключающийся, с защитой от разрыва трубы и т.д.).
- 6. Желаемое оснащение, напр. резервуары, насосы, переключатели положений, электромагн.клапан, КИП и т.д

Техническое обслуживание и ремонт

Во время нормальной эксплуатации Чистяще-скребковых шаровых кранов компании Итаг, не требуется техническое обслуживание или смазка. Во время сборки, необходимо обработать все детали смазкой на основе ПФТЭ и в дальнейшем не требуется смазывать детали вплоть до следующего ремонта. Прочная конструкция Чистящескребковых шаровых кранов компании Итаг позволяет с легкостью осуществлять техническое обслуживание и заменять детали, не извлекая кран из трубопровода, благодаря этой особенности снижено время простоя и затраты на ремонт

Запасные детали

У Чистяще-скребковых шаровых кранов компании Итаг есть заводской номер, указанный на табличке производителя. При заказе запасных деталей, пожалуйста, укажите этот номер и следующие данные:

Условный диаметр наприм. 10 дюймов Условное давление наприм. ANSI 600 Заводской номер наприм. 83764 Обозначение зап.детали наприм. Шар

Количество штук

Для получения дополнительной информации по сборке и обслуживанию Чистяще-скребковых шаровых кранов компании Итаг, смотрите Руководство по сборке IN 2-505 часть 1 и IN 2-503 часть 1.

